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Abstract

One of the functions of reputations in societies is to enable coor-
dination, and some of the most familiar instances of this occur when
reputations are based on past actions. For example, a history of ag-
gressive play is often interpreted as predicting more aggressive play
in the future. This permits a pair of individuals with unequal repu-
tations for aggressiveness to avoid wasteful conßict that would result
from aggressive play by both.
This paper describes a laboratory experiment designed to explore

whether, in a population of subjects, such coordination through repu-
tation formation will emerge spontaneously, what form it will take, and
how reliably it will be observed by the individuals in the population.
Reputation-based coordination of the sort illustrated above did arise
in all experimental sessions, but the rate of adherence to the social
rule implicitly adopted by the group varied across the experimental
populations as a function of treatment variables.
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1 Introduction
The idea that an individual might wish to condition her actions on the rep-
utations of the people with whom she is interacting is ubiquitous in human
societies, and the functions such reputational systems can serve are numer-
ous. In this paper, we study one of the familiar functions of reputations�
that of a coordination device. The basic idea is that if two individuals must
make simultaneous decisions in a symmetric situation and if there is some
advantage to at least one of the individuals if they act differently from each
other, then any external cues, if agreed upon either tacitly or explicitly, can
serve to direct them toward a coordinated asymmetric outcome. Reputations
can provide such external cues. As an analogy, many species of animals are
observed to respect �pecking orders� which peacefully desymmetrize situa-
tions that might otherwise result in conßict. (A typical example is males
competing for the opportunity to copulate with all the fertile females in a
herd. The top male often wins without a Þght). For a human example, an
individual (or Þrm) having the reputation of a bully may be able to avoid
conßict and prosper because potential competitors either defer to the bully
when in situations of conßict or avoid such situations to begin with.
There are complications even in these relatively simple examples, how-

ever. Is the top animal in the pecking order the individual with the toughest
appearance (e.g., largest size, sharpest antlers, brightest color) or the one
with the best record in past conßicts? How many instances of bullylike be-
havior does it take for the reputation of bully to be acquired and how long
does it last? In short, what is the nature of the external cue? In real-world
situations the natures of external cues can differ for reasons having much
more to do with example-speciÞc details than with the coordinating role of
the cue. For example, the ability to remember the identity of the strongest or
weakest animal in one�s herd might have survival value in the face of threats
from external predators or might be useful in Þnding food. Similarly, bully
reputations might correlate with aggressive tendencies toward external foes;
and it might therefore pay either to align with or against bullies in one�s own
society.
To learn about how humans use reputations as coordinating devices,

therefore, it seems useful to explore the question in the laboratory, where
many of these other factors can be controlled for, at least to some extent. In
this paper we report on one such experiment. Our hope is that the aspects
of everyday behavior that concern the coordinating role of reputations are

2



maintained in experimental behavior despite the abstract setting of the lab-
oratory environment. We know of no previous experiments on this subject.
We report here on the experimental results from a variety of sequenced

2 × 2 coordination games with successively rematched player pairs, where
prior to play in each round each pair of subjects was presented with a pair of
summary signals, called �current positions,� that reveal information about
the recent play of both members of the pair. We did not describe the po-
sitions to the subjects as reputations and did not suggest to the subjects
that conditioning on positions was appropriate. We merely gave the group
of subjects the opportunity to develop, collectively but implicitly (since they
were given no opportunities to communicate directly with each other), a
coordination mechanism by providing to each matched pair of players the
common knowledge of their respective current positions.1 Our interest was
in whether, how, and how reliably, our experimental societies would use the
position pairs as coordinating devices and in which of the many possible
position-based coordinating rules they would adopt.
More speciÞcally, the subjects in a session played repeatedly the same

variant of either

0, 0 x− y, x+ y
x+ y, x− y 0, 0

or
x, x x− y, x+ y

x+ y, x− y 0, 0
,

where x > y ≥ 0. Identifying the top row with the left column, all such one-
shot games are seen to be symmetric, but two of their Nash equilibria � the
ones that use pure strategies � are not symmetric. Furthermore, though the
third Nash equilibrium in each such game is symmetric, it involves an ineffi-
cient mixed-strategy combination. Each subject�s position is a signal about
how frequently in the recent past she has played the bottom row (equiva-
lently, the right column) which we might think of as the more aggressive
action.
Our prior guess was that the incentives to coordinate on the pure Nash

equilibria of the one-shot games would be sufficiently strong that the subjects
would Þnd ways to achieve them quite frequently. Furthermore, we suspected
that the organizing rule with the most salience would be that in cases where a
matched pair Þnds itself in unequal positions the player having the�tougher�
current position (i.e., the position signalling more frequent recent play of

1Of course there might be an experimenter effect: subjects might try to use their
positions to coordinate solely because they are prominently available in the experiment.
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the aggressive action) would play the aggressive strategy while the player
with the �softer� current position would choose the other action. This seems
to accord with everyday intuition: individuals who have reputations formed
from their records of previous actions are commonly expected to continue as
in the past. But why this rule is so intuitive is itself not obvious; after all, the
reverse rule (tougher reputation types playing soft and softer types playing
tough) coordinates similarly. In addition, there are many other patterns
which, though more complicated in that the identity of the player chosen to
play tough depends on more details of the state pairs, would also achieve
coordination.
From a theoretical standpoint, there is little basis for distinguishing among

various organizing rules. For instance, Rosenthal and Landau (1979) examine
whether the intuitive rule might have an evolutionary advantage (measured
by population coordination rates) over the reverse rule. They Þnd, however,
that no systematic evolutionary advantage accrues to a population equilib-
rium involving the intuitive rule as compared to one involving the reverse
rule. And the broader question of what the optimal equilibrium rule is from
an efficiency perspective remains open. In view of the lack of guidance for
population rule selection in the theoretical literature, an important contri-
bution of our study is to assess experimentally to what extent experimental
subject populations behave as though they have coordinated on a rule and,
if yes, which rule.
Absent either an evolutionary or an efficiency rationale, one can speculate

about other reasons that might lead to the adoption of the intuitive rule.
Perhaps it is the simplicity of the intuitive rule that makes it salient (although
the reverse rule seems equally simple). Perhaps it is the fact that people who
play according to the simplest of all rules � constantly the same pure strategy
� end up in the extreme positions and therefore are not observed to violate
the intuitive rule. And perhaps our prior guesses would be proved wrong �
what seems focal to us is not necessarily focal to everyone, and if there is
heterogeneity in intuition across the population, this may make adoption of
any one rule difficult for the subject population.
Our experimental Þndings have turned out to be quite interesting. We

ran sixteen sessions, all with initially inexperienced subjects, for 100 rounds
each. Ten of our sessions were based on parametric variants of �Battle of the
Sexes,� or BOS, the Þrst game form above; and six used parametric variants
of �Hawk-Dove� or �Chicken,� or HD, the second game form above. Examin-
ing the last 50 rounds of each of the sessions, we Þnd that, to the extent that

4



any one simple rule explains play, it is overwhelmingly the intuitive rule. In
the BOS sessions, when a player is matched with a co-player in an unequal
position, she plays according to the intuitive rule 90.6% of the time. The in-
tuitive rule is somewhat less successful in the HD sessions, but it still predicts
78.9% of choices correctly for players matched with an unequally positioned
opponent. Both satisÞcing and altruistic motives could be explanations for
this difference across game forms: The less aggressive strategy is relatively
safe in HD, and if its payoff against either strategy of the opponent is good
enough, why risk it for a small gain? This safe strategy is also kindly toward
the opponent no matter what he does.
The compliance percentages from unequal positions listed above are aver-

ages over treatments for each game form in which the y-payoff parameter was
varied. In both BOS and HD treatments, increasing the y-payoff parame-
ter unambiguously reduced the predictive power of the intuitive rule. When
y = 0 in BOS, the game becomes a pure coordination game and the intuitive
rule correctly predicted 97.8% of choices; this declined to 90.8% when a small
positive y was used and still farther to 81.4% in the treatment having the
highest y value. The situation was similar for HD: With the same small y
value as in BOS, the intuitive rule correctly predicted 91.0% of choices. With
the larger y value, the intuitive rule predicted 72.9% of HD choices.2

In fact, the majority of departures from the intuitive rule, especially in
the BOS sessions, were by players who deviated to the aggressive strategy.
This suggests a calculation involving a sacriÞce of current payoff for improved
future payoffs. In order to quantify such trade-offs and thereby attempt to
explain the varying predictive power of the intuitive rule across experimental
sessions, however, it is useful to view the experiment through the lens of a
well-speciÞed mathematical model.
The model of Rosenthal and Landau (1979) is a relatively simple lens

through which to view this experiment. It depicts a society consisting of a
large number of individuals who are repeatedly randomly matched to play
a game (having von-Neumann-Morgenstern utility payoffs) over an inÞnite
time sequence, where all individuals are assumed to discount according to
a common Þxed factor.3 Actions produce effects on payoff-irrelevant indi-
vidual state variables, and matched pairs of individuals know their own and

2HD with y = 0 is a game with different equilibrium structure, so we did not try any
such treatments.

3Rosenthal and Landau restricted their analysis to a particular parametrization of HD,
but their model is usable more generally.
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opponents� individual states, just as in our experiment the matched pairs of
subjects know both positions. A steady state equilibrium of this model is a
stationary Markov rule that assigns to each ordered state pair ((own, oppo-
nent�s)) a strategy (possibly mixed) in the stage game such that each used
action is a best response in each state pair, taking the future into account
as follows: The states occupied by an individual�s future matched opponents
will be i.i.d. draws from the unique invariant distribution over individual
states generated by the Markov rule, and all individuals will play according
to the rule in the future. Furthermore, an extension of the intuitive rule (so
that it also makes choices in equal-position situations) generates one of the
steady state equilibria of the model when the common discount factor is not
too high relative to the parameter y; and the smaller is y, the larger is the set
of common discount factors for which the intuitive rule generates a steady
state equilibrium.
The applicability of this model to the experiment is evidently suspect be-

cause of its simplifying assumptions of an inÞnite future, discounting, money
payoffs being von-Neumann-Morgenstern utilities, and an inÞnite player set.
Despite these, the equilibrium of the model corresponding to the intuitive
rule seems to organize the data reasonably well. (We shall discuss later why
the assumptions above might not seriously misrepresent our subjects� behav-
ior.) So, although the relationship between the model and the experiment
seems crude, it Þts the data reasonably well in many respects, provides at
least a hint of an explanation for the observed effect of the y parameter, and
therefore leads us to the following tentative conclusions.

1. Of the model�s many steady state equilibria, only the one correspond-
ing to the intuitive rule approximates play observed in the laboratory.

2. Experimental play of the intuitive rule is most reliable in BOS with
small y parameter and least reliable in HD with high y parameter; and,
within each game form, reliability is monotone in y.

3. Since for any Þxed common discount factor and Þxed game form the
intuitive rule generates a steady state equilibrium only when y is sufficiently
small, the relatively high noise levels in the data for the experimental sessions
with larger y values reßect the increased incentives that relatively patient
subjects have to deviate from the prescriptions of the intuitive rule.4

4We will discuss later why we think degrees of impatience might matter in our experi-
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We hasten to add that our claim that the model Þts the experimental data
reasonably well is inherently subjective. The intuitive rule, as formulated
here, allows for no variance in play when players in unequal positions are
matched. Since there is some variance in the experimental data, statistical
tests would reject the hypothesis that the model could have generated the
data. Furthermore, we have run only 16 sessions; and these encompass a
variety of treatments. In addition, the model predicts subject play least
well in situations where a subject and her matched opponent are in equal
positions; i.e., in the situations where the intuition for the intuitive rule
seems murkiest. Thus our Þndings could be interpreted more as supportive
of the intuitive rule than of the intuitive rule together with the model in
which we have chosen to embed it.
Because many features of the experiment and many of the questions that

can potentially be addressed using its data are complex, we intend to present
our Þndings in stages. This paper, the Þrst such stage, is devoted to the �long
run,� or what happens after play settles down. This seems appropriate given
our focus on Þrst understanding the long-run phenomenon of how humans
have come to use reputations as coordinating devices. We believe that our
subjects have learned sufficiently about their environment by round 50 and
that their behavior after that is in the aggregate approximately stationary.
(We will present evidence for this as well as for the absence of end-game
effects in the data.) Accordingly, in this paper we will restrict our attention
almost entirely to the data from rounds 51-100 of each session. We will
then compare the experimental results for these rounds with certain steady
state equilibria of the theoretical model, leaving for future analysis such
interesting questions as why the intuitive rule is apparently focal and how
the populations of subjects learn to play it.
The rest of this paper is organized as follows. Section 2 reviews some

relevant literature on the role of reputation and other signals as coordinating
devices and highlights the connection of this paper with that literature. Sec-
tion 3 describes the experimental design and procedures. Section 4 presents
the theoretical model to be adapted to the experiment. Section 5 presents the
results of our experiment and compares them to the theoretical predictions.
Section 6 concludes.

ment even though all payments are made at the end of the experimental session.
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2 Review of Literature
Although the model of Rosenthal and Landau (1979) and the experiments
here share a distinct approach to the issue, our work relates more broadly
to theoretical and experimental attempts to understand how desymmetrizing
opportunities may be used to enhance coordination. It is now well understood
theoretically that the introduction of pre-play communication consisting of
costless signals can affect the equilibrium outcomes of games (see Kreps and
Sobel (1994) for a survey). Since players can condition their choices on the
messages exchanged during pre-play communication, one can achieve equi-
librium outcomes in the extended game that are not possible in the original
game where pre-play communication is absent. For two-person, normal-form
games, such as those we study in this paper, the set of Nash equilibrium
payoffs in the extended game is simply the convex hull of Nash equilibrium
payoffs in the original game (see Aumann and Hart (1999)). For normal-form
games of four or more players, Barany (1992) has shown that the set of Nash
equilibria in the extended game corresponds to the set of correlated equilibria
in the original game.
Costly signaling can work as well to achieve coordination. Perhaps the

most dramatic example of this is Ben-Porath and Dekel (1992), where one
player�s ability to burn money in advance of a BOS allows him to achieve his
preferred equilibrium (under suitable forward induction logic). Interestingly,
in this situation, the signal that both players condition upon to achieve this
outcome is the decision not to burn money, so it is the mere availability of
the costly signal, and not the incursion of the cost, that does the job.
In contrast, we study situations where the pre-play �messages,� in the

form of a player�s current position, depend upon a player�s past actions.
Although our signals are costless in the sense that payoffs for a given round
of the game depend only on choices and not on pre-play messages, signals
are costly in the broader sense that a player�s past payoff-relevant choices
determine his current position in a given round of the game. Thus, the costs,
such as they are, of signalling are determined endogenously in the class of
games we study.
Our paper is also somewhat related to the extensive literature on focal

points (see Schelling (1960) for the classic treatment). This literature seeks
to understand inherent properties of a situation that may be used to achieve
coordination. The current positions in our model may be viewed as such an
inherent property. However, the fact that a player can consciously �build
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up� his reputation with an eye toward generating beneÞcial asymmetries in
the future distinguishes our approach from this literature.
On the experimental front, symmetric markets have provided perhaps

the best settings in which desymmetrized coordination has been examined.
Ochs (1990) and Meyer, et al. (1992) study decentralized market games in
which subjects simultaneously select locations at which trade can take place.
And a series of experiments (e.g., Rapoport (1995) and Rapoport, et al.
(1999)) studies simultaneous market entry decisions by subjects in identical
circumstances where the payoffs to entry decrease in the number of subjects
choosing to enter. In addition, Cooper, et al. (1994), provide BOS trials in
which a prepended desymmetrizing event selects one of the equilibria with
great regularity.

3 Experimental Design and Procedures
The experiment consisted of 16 sessions conducted at Princeton University in
Spring 1999. Twelve volunteer subjects (Princeton undergraduates and/or
Masters students from the Woodrow Wilson School) participated in each
session, with no subjects taking part in more than one session. Subjects were
recruited by e-mail invitations to participate in a decision making experiment.
They were promised between $5 and $35 for a session lasting approximately
60 minutes. In fact, no session lasted longer than 60 minutes; the lowest
payoff actually earned in the experiment was $12.70; and the highest amount
earned was $27.25. Even the lowest amount is considerably more than the
hourly outside earning rate of the typical student. The subjects were paid
their winnings individually in cash at the end of the session.
The following procedures were common to all sessions. At the beginning

of a session the subjects were seated at computer terminals in a single room
and given a set of instructions. These instructions were read aloud, and the
subjects were then given an opportunity to ask questions. (See the appendix
for a sample copy of the instructions used.) Subjects then played the same
symmetric 2×2 normal-form game 100 times in succession. No communica-
tion between subjects was permitted, and once play began all choices and
information were transmitted via the computer terminals. In each round,
each subject was randomly and anonymously paired with another individual
in the session, with equal probability given to all eleven others in each round.
Subjects chose between the two possible actions, one labeled �→� and the
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other labeled �←�.
Prior to choosing an action in each round, each subject was told her

own current position, the current position of the person with whom she was
currently matched, and the number of subjects currently at each position.
There were Þve possible current positions given by tick marks on a horizontal
line:

| | | | |
At the start of the Þrst round, all subjects began in the middle position.
That is, each subject�s initial current position was

| | | | |

↑
For round 2, if a subject had previously chosen �→,� then her current po-
sition would be shifted one tick mark to the right. Likewise, if in round 1
she had chosen �←,� her current position would be shifted one tick to the
left. In all subsequent rounds, a similar application of this scheme deter-
mined all subjects� current positions with two exceptions. If a subject was
at the rightmost tick mark and chose the action �→,� then she stayed at the
rightmost tick mark. Similarly, if a subject was at the leftmost tick mark
and chose action �←,� then she remained at the leftmost tick mark. Thus,
a player�s current position provided a signal about recent play. Figure 1 dis-
plays a typical Þrst-round screen including current positions. For purposes
of exposition, we shall number the Þve positions as follows:

| | | | |

0 1 2 3 4

but no such delineation was made for the subjects participating in the ex-
periment.
Following the selection of an action by all subjects in a given round, the

payoff cell jointly selected by a subject and the matched opponent was illumi-
nated on the subject�s screen. Subjects then had to click their computer mice
to continue to the next round. Subjects were kept continuously informed of
their cumulative earnings throughout the session. At its conclusion, subjects
were asked to Þll out a post-experiment questionnaire explaining how they
had played during the experiment and were paid their winnings privately.
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Early rounds of the experiment tended to be completed relatively slowly
with more than a minute sometimes elapsing between the completion of suc-
cessive rounds.5 By round 20, however, the speed with which decisions were
being made increased substantially. The time elapsing between rounds was
by then typically not more than about 15 seconds. This pace remained rel-
atively constant for the remainder of the session; however, in some sessions
play slowed down again in the last few rounds. During the early rounds, sub-
jects appeared to be testing various strategies and generally getting a �feel�
for the game. In later rounds, subjects seemed mostly to be just following
whatever decision rules they had settled on. Occasionally there would be a
round that was delayed by a subject seemingly deciding to re-evaluate her
strategy.

Treatments
As discussed earlier, the treatments all involved a stage-game money payoff

matrix of the form
z, z x− y, x+ y

x+ y, x− y 0, 0
,

where x > y ≥ 0.6 When z = 0, the game is a BOS variant, and when z = x
the game is an HD variant.7

For all treatments we Þxed x at 20 cents, and we varied the amount y
across treatments within each game form (BOS or HD). Thus, we shall use
the shorthand BOS(y0) to denote a session where the BOS payoff matrix was
used and the y parameter was assigned the value y0 (in cents); similarly for

5No play in a round was possible until all subjects had made choices in the preceding
round.

6As is customary, the Þrst number in the cell is the payoff to the row player.
7To be precise, in our experimental implementation we added 5 cents to both payoffs

in each cell of the matrix to guarantee that all subjects received at least $5 for their time.
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HD(y0) .8 The following table summarizes the sessions we ran:

Treatment Name
HD(5)
HD(10)
BOS(0)
BOS(5)
BOS(10)

# of Sessions
2
4
2
6
2

.

Table 1: Summary of Treatments

(We ran more sessions for HD(10) and BOS(5) because those treatments ex-
hibited more cross-session variation.) For all of these treatments, the intuitive
rule predicts the same behavior when subjects occupying different positions
encounter one another. When the members of a matched pair occupy the
same position, the prediction of the equilibrium of the theoretical model cor-
responding to the intuitive rule depends on both the assumed discount factor
and the parameter y.

Other Design Considerations
Two other aspects of the experimental design are worth mentioning.
1. To keep the environment as simple as possible, we chose not to try to

induce theoretically risk-neutral preferences through a binary lottery (e.g.,
Roth and Malouf (1979)) despite the fact that the games we study have
mixed equilibria and more than two levels of payoffs.9

2. To control for the possibility that the labeling of actions might affect
subject play, in half the sessions within each treatment we labeled the aggres-
sive action �→� and in the other half �←�.10 To test whether these labels
had any effect on subject choices, we conducted a t-test of the proportions
of strategically equivalent choices made under the two different labelings for
each treatment. As an example, a player whose current position was 4 and
who was matched with a 0 and chose→ under one labeling would be deemed

8Thus Figure 1 is for HD(10).
9An additional consideration in not employing this procedure is that its success in

practice in inducing risk-neutral preferences has been mixed. Selten et al. (1995) report
on experiments showing that making direct payments for actions may actually work better
than binary lotteries in inducing risk-neutral behavior.
10In BOS(0), where the actions are equally aggressive, the statement does not apply.
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to be acting strategically equivalently to a 0 matched with a 4 choosing ←
under the reverse labeling.11 For a given treatment, we tested whether the
proportion of right choices in the Þrst case was equal to the proportion of left
choices in the second for each strategically equivalent reputation pair. We
Þnd no signiÞcant labeling effect at the 5% level in the last 50 rounds of play
for any pair in any treatment. As a consequence, in the following exposi-
tion we pool all sessions for a given treatment and rename the positions and
choices in half the sessions so that �→ � now always refers to the aggressive
choice.

4 Theory
To provide some basis for judging the predictive power of the intuitive rule
with respect to the experimental results, we adapt the Rosenthal-Landau
model to our experimental setting.
For the one-shot game

← →
← z, z x− y, x+ y
→ x+ y, x− y 0, 0

with 5 positions (labelled 0, ..., 4 from left to right) and common discount
factor β, a steady state equilibrium is a triple (π, P, v) where

π = (π0, π1, π2, π3, π4) is the population�s steady state relative-frequency
distribution over the positions;

P =  p00 ... p04
. ... .
p40 ... p44

 ,
where pij is the probability that each individual assigns to the play of →
when own position is i and opponent�s position is j; and

11Recall that the subjects were also kept apprised of the current population frequency
distribution over positions. For this test, as for all others in this paper, we pooled the
data across these different frequency distributions.
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v = (v0, v1, v2, v3, v4) is the vector of equilibrium present values.

The equilibrium conditions are:

π0 = π1
X
j

πj (1− p1j) + π0
X
j

πj (1− p0j) (1)

πi = πi+1
X
j

πj (1− pi+1,j) + πi−1
X
j

πjpi−1,j (2)

for i = 1, 2, 3; and

π4 = π4
X
j

πjp4j + π3
X
j

πjp3j . (3)

Adopting the conventions 4 + 1 ≡ 4 and 0− 1 ≡ 0,

vi =
X
j

πj [pij ((x+ y) (1− pji) + βvi+1)

+ (1− pij) ((x− y) pji + z (1− pji) + βvi−1)]

i = 0, ..., 4. (4)

Finally ∀i, j, pij = 1 if

(x+ y) (1− pji) + βvi+1 > (x− y) pji + z (1− pji) + βvi−1;

and pij = 0 if

(x+ y) (1− pji) + βvi+1 < (x− y) pji + z (1− pji) + βvi−1;

Of course, we must also have

0 ≤ pij, πi ≤ 1 ∀i, j, and
X
i

πi = 1.

(1)-(3) require that π be an invariant distribution for the Markov chain
generated by the given matching process and decision rule P . (4) deÞnes v
as the vector of present values for a player Þnding herself in each position
in the steady state, and the strict inequalities require that best responses be
played with probability one.
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To illustrate, i.i.d. play of the symmetric one-shot equilibriumµ
x+ y − z
2x− z ,

x− y
2x− z

¶
generates a steady state equilibrium in which

pij = p ≡ x+ y − z
2x− z ∀i, j, vi =

x2 − y2
(1− β)(2x− z) ∀i, and

π =

Ã
4X
i=0

pi(1− p)4−i
!−1

((1− p)4, p(1− p)3, p2(1− p)2, p3(1− p), p4).

For BOS, z = 0 and y < x; so p ≥ 1/2, and the components of the π− vector
are nondecreasing. For HD, z = x, so p = y/x; and the π−distribution is
nondecreasing or decreasing according to whether y ≥ x/2 or not. The value
of β plays no role in this steady state equilibrium since players foresee no
future implications of their current actions.
As another illustration, the reverse intuitive rule is consistent with a

steady state equilibrium for all the BOS and HD parametrizations of this
experiment. Here the value of β does enter the calculations, but as far as we
have checked there seems to be a reverse-intuitive steady state equilibrium
for each of the treatments for any β ∈ [0, 1).12 A typical π− vector for such
an equilibrium is ∩−shaped. For instance, for BOS(10) the steady state
equilibrium when β = .99 has

pij =

(
0 if i > j
1 if i < j

(p00, p11, p22, p33, p44) ∼= (.50, .41, .49, .54, .58) and
(π0, π1, π2, π3, π4) ∼= (.26, .44, .26, .05, .00).

There are many other steady state equilibria for the models. Most of
these, like the two above are grossly at odds with the experimental data.
There are some variants of the intuitive rule, however, that generate steady
state equilibria having qualitative characteristics similar to those of the equi-
libria that are generated by the intuitive rule. More on this later.
For the rest of this section, we describe steady state equilibria correspond-

ing to the intuitive rule.
12This may be an artifact of the particular treatments chosen for the experiment. See

Rosenthal and Landau (1979).
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4.1 The BOS Model

The intuitive rule has

pij =

(
1 if i > j
0 if i < j

.

To complete the speciÞcation of an equilibrium, we need to Þnd {pii} for
which the π and v that solve (1)-(3) and (4) satisfy the best-response condi-
tions. The tables below give the unique approximate {pii} and π values that
do this for each of the three treatments for a variety of discount factors. In
each case, the highest discount factor listed is close to the maximum discount
factor for which the intuitive rule forms an equilibrium.13

β p00 p11 p22 p33 p44
.4 .528 .535 .500 .465 .472
.5 .536 .547 .500 .453 .464
.6 .545 .561 .500 .439 .455
.75 .561 .585 .500 .415 .439
.85 .573 .604 .500 .396 .427
.995 .594 .638 .500 .362 .406

Table 2: Steady State Play of → in BOS(0) from Equal Positions

β p00 p11 p22 p33 p44
.4 .677 .707 .669 .635 .621
.5 .695 .740 .693 .644 .622
.6 .715 .783 .730 .662 .625
.75 .755 .880 .829 .722 .642
.85 .794 .987 .961 .818 .675

Table 3: Steady State Play of → in BOS(5) from Equal Positions

13The intuitive rule forms a steady state equilibrium for every nonnegative discount
factor between zero and the maximum for each treatment.
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β p00 p11 p22 p33 p44
.4 .826 .877 .833 .797 .765
.5 .850 .928 .879 .825 .774
.6 .879 .993 .944 .868 .789

Table 4: Steady State Play of → in BOS(10) from Equal Positions

Notice that for those cases where the same discount factor appears in more
than one of the tables above, holding that discount factor and the position
i Þxed and letting the y parameter increase always results in an increased
value for pii.

β π0 π1 π2 π3 π4
.4 .348 .108 .088 .108 .348
.5 .347 .109 .088 .109 .347
.6 .346 .110 .089 .110 .346
.75 .343 .112 .091 .112 .343
.85 .341 .113 .092 .113 .341
.995 .338 .115 .095 .115 .338

Table 5: Steady State Position Frequencies in BOS(0)

β π0 π1 π2 π3 π4
.4 .316 .112 .086 .099 .387
.5 .313 .113 .087 .099 .388
.6 .309 .113 .087 .100 .391
.75 .300 .113 .088 .100 .400
.85 .290 .112 .087 .100 .414

Table 6: Steady State Position Frequencies in BOS(5)
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β π0 π1 π2 π3 π4
.4 .288 .111 .080 .082 .438
.5 .283 .111 .080 .082 .443
.6 .278 .111 .080 .080 .452

Table 7: Steady State Position Frequencies in BOS(10)

Notice that in each of the three treatments, the π distribution is ∪-shaped
and not very sensitive to changes in the discount factor.

4.2 The HD Model

Approximate values of {pii} and π which together with the {pij}j 6=i of the in-
tuitive rule generate steady state for various β−values for the HD treatments
are given in the tables below.

β p00 p11 p22 p33 p44
.5 .359 .435 .390 .378 .314
.6 .396 .516 .472 .442 .340
.75 .473 .708 .697 .622 .410
.8 .506 .802 .820 .725 .451
.85 .544 .915 .979 .865 .507

Table 8: Steady State Play of → in HD(5) from Equal Positions

β p00 p11 p22 p33 p44
.5 .688 .844 .781 .744 .618
.6 .740 .970 .924 .859 .665

Table 9: Steady State Play of → in HD(10) from Equal Positions
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Again (at least for the one case of a discount factor in common) each pii
value increases in y.

β π0 π1 π2 π3 π4
.5 .389 .095 .085 .113 .318
.6 .376 .100 .086 .114 .325
.75 .351 .101 .088 .115 .346
.8 .340 .101 .087 .115 .357
.85 .327 .100 .0860 .113 .374

Table 10: Steady State Position Frequencies in HD(5)

β π0 π1 π2 π3 π4
.5 .310 .110 .087 .101 .392
.6 .297 .109 .086 .098 .410

Table 11: Steady State Position Frequencies in HD(10)

Here the π distribution is more sensitive to changes in β.

5 Results

5.1 Preliminary Analysis

In this section, we examine whether observed behavior (in the last 50 rounds)
appears qualitatively consistent with the intuitive rule overall. First, we
present summary statistics on the frequency of choices that accord with the
intuitive rule when matched positions are unequal.

Treatment % Compliant
BOS(0) 97.8
BOS(5) 90.8
BOS(10) 81.4
HD(5) 91.0
HD(10) 72.9

All treatments 85.9

Table 12: Compliance with Intuitive Rule
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As Table 12 makes clear, in all treatments, levels of compliance with the
intuitive rule are considerably in excess of what might occur by chance. Fur-
thermore, the compliance rates within each game form are monotonically
decreasing in y. This may be formalized by testing for equality in mean
compliance rates across treatments. Table 13 below presents t-statistics for
pairwise comparisons of compliance rates. In all cases, differences in the y
parameter are signiÞcant at the 5% level.

Treatment t-statistic
BOS(0) vs BOS(5) 6.88
BOS(5) vs BOS(10) 7.35
HD(5) vs HD(10) 10.87

Table 13: Differences in y parameter

Interestingly, if we hold Þxed the value of the y parameter and compare
compliance rates for different z values, we Þnd that there is a signiÞcant
difference in the compliance rates of BOS(10) as compared to HD(10) (t =
4.59), but no signiÞcant difference between BOS(5) and HD(5) (t = 0.18) .
Thus, compliance rates seem to be more sensitive to variations in y than to
variations in z.
To see roughly how much information about current positions affects play,

it is useful to compare our compliance rates to the results of Cooper, et al.
(1994). They report results of the last eleven rounds of three round-robin
experiments where each session consisted of eleven players playing BOS(10).
Out of 165 plays, only 41% resulted in coordinated off-diagonal outcomes.
Cooper, et al. do not report choice data by individuals, but their aggregate
statistics are roughly consistent with the predictions of i.i.d. draws from
the symmetric mixed strategy equilibrium of the game above in which each
player randomizes with probability 3/4 on the aggressive action. To see the
comparison another way, in our BOS(10) treatment 58.5% of the joint choices
overall and 65.6% of the joint choices from unequal positions resulted in off-
diagonal outcomes. These numbers are considerably higher than 41%. This
comparison suggests that information about current positions is probably
playing a large role in facilitating coordination in our experiment.14

14Cooper et al. also report on a treatment in which prior to each play one of the players
was permitted (but not forced) to announce the listed name of one of the strategies, with
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To get a feel for the evolution of play in our experiment, Table 14 presents
compliance percentages (from unequal positions) for speciÞc rounds. Here we
see that while the intuitive custom is, to some extent, learned by the subjects;
nonetheless, a considerable proportion of early moves is already consistent
with the intuitive rule. This suggests that the intuitive rule might indeed be
intuitive or instinctive for many subjects.

Treatment Rd. 2 Rd. 51 Rd 100
HD(5) 100 100 100
HD(10) 63.6 68.8 78.1
BOS(0) 83.3 100 100
BOS(5) 63.3 86.5 92.6
BOS(10) 88.9 94.4 100

All treatments 71.8 87.3 91.7

Table 14: Compliance Over Time

Several aspects of Table 14 are worth highlighting. First, more than 2/3 of
subject choices were already consistent with the intuitive custom in Round
2 of the experiment.15 By round 51, overall compliance rates increased far-
ther to around 87%. In two treatments, HD(5) and BOS(0), the data were
perfectly consistent with the intuitive rule in this round. And, over the last
50 rounds of the game, there was only a slight upward trend in compliance
rates. A feeling for the stationarity of compliance with the intuitive rule
over the last 50 rounds may also be obtained from Figures 2-7, which depict
average compliance rates across treatments over all rounds. As Figures 2-7
also illustrate, there are no obvious endgame effects in the compliance rates.
The theoretical model hypothesizes that individuals are playing station-

ary strategies in an inÞnitely repeated game. A necessary condition for the
data to be consistent with this hypothesis is that the empirical frequency
distributions of current positions be constant. To test this, we divided the

no previous discussion of what signal such announcements might convey. In 157 of the 165
observations, the designated player announced the name of his aggressive strategy; and in
154 of these the pair successfully coordinated on the favored outcome of the announcer.
Evidently, the subjects had little difficulty in appreciating and responding to this particular
desymmetrizing opportunity.
15Since all subjects begin in the same current position, round 1 provides no compliance

data.
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observations of current positions into two groups: rounds 51-75 and rounds
76-100. The theoretical prediction is that the empirical frequency of current
positions should be the same in rounds 51-75 as in rounds 76-100. Table 15
below reports p-values obtained from Fisher exact tests of this null hypothe-
sis. As the table shows, the null hypothesis is rejected at the 5% signiÞcance
level in one of the HD(10) sessions (session 4) and both of the BOS(0) ses-
sions, but not in the remaining 13 sessions. In the sessions where the null
hypothesis is rejected, much of the variation appears to occur in rounds 51-
60; thus, if instead we examine only the last 40 rounds divided evenly into
two groups (third column of Table 15), we Þnd that the null hypothesis is
not rejected at the 5% level in any of the previously rejected sessions.16

p-values
Session Treatment Rds 51-100 Rds 61-100
1 HD(10) .578 .184
2 HD(10) .288 .200
3 HD(10) .080 .507
4 HD(10) .008∗ .147
5 BOS(10) .257 .163
6 BOS(10) .349 .979
7 BOS(5) .943 .976
8 BOS(5) .127 .837
9 BOS(5) .127 .278
10 BOS(5) .694 .583
11 BOS(5) .916 .382
12 BOS(5) .692 .568
13 HD(5) .119 .034∗

14 HD(5) .777 .446
15 BOS(0) .049∗ .437
16 BOS(0) .010∗ .279
∗ denotes signiÞcant at 5% level

Table 15: Fisher Exact Tests of Stationarity

To summarize, the introduction of current position information clearly
increases the frequency with which coordination is achieved relative to a
16We reject at the 5% level in only one session, a different one, using this methodology.
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similar experiment where this information is absent. Moreover, the form this
coordinating behavior takes appears to be qualitatively consistent with the
predictions of the intuitive custom and relatively stationary for the last half
of each session. To see how well the data Þt the more detailed predictions
of the theoretical model, we shall have to look more closely at the data for
each treatment.

5.2 BOS Results

We turn Þrst to more detailed analyses of the results from the BOS treat-
ments.

BOS(0)
In BOS(0), there is no difference in the aggressiveness of the two actions.

Here, current positions merely serves as a signal of the tendency of a partic-
ular player to be choosing the action labelled→ rather than the one labelled
← . Perhaps as a consequence of this, the compliance rates were highest
for this treatment. To see in more detail the patterns of compliance, it is
useful to examine the proportion of plays where the → action was chosen as
a function of the current position pairs. This information is presented for
the last 50 rounds of the two BOS(0) sessions in Table 16, where the entries
are the percentages of instances of → play from each position pair and the
numbers in parentheses are the totals of observed instances of the respective
position pairs. (Thus, for instance, the numbers in row 0 column 4 indicate
that 99.4% (i.e., 172) of the 173 instances of subjects in position 4 facing an
opponent in position 0 played → .)

Player�s Own Current Position
0 1 2 3 4

0 50.1 (126) 97.6 (42) 100 (35) 100 (44) 99.4 (173)
Opponent�s 1 11.9 (42) 50.0 (8) 100 (10) 100 (9) 100 (43)
Current 2 0.0 (35) 0.0 (10) 50.0 (6) 100 (8) 100 (33)
Position 3 0.0 (44) 0.0 (9) 0.0 (8) 75.0 (4) 86.3 (51)

4 0.6 (173) 0.0 (43) 0.0 (33) 9.8 (51) 61.2 (160)

Table 16: Play of → in BOS(0)
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In the case of players in unequal positions, as already noted, the intuitive
prediction does remarkably well. Indeed, out of 896 instances of choices in
unequal current positions, 876 (97.8%) were in compliance with the intuitive
rule. Interestingly, of the 20 noncompliant cases, all but two were from (3,4)
or (0,1) pairings. Moreover, 7 of the 20 instances of non-compliance were the
actions of a single subject.
In the case of players with equal current positions (the diagonal cells in

Table 16), the equilibrium prediction of the model does less well, no matter
what discount factor is assumed. There are too few observations to make
much of the comparison with the theoretical calculations of p11, p22, and p33
from Table 2, but the extreme diagonal entries of 50.1% and 64.2% are lower
and higher, respectively, than all the numbers in the p00 and p44 columns,
respectively, for BOS(0) in Table 2. Indeed, the equilibrium predictions in
these cells are evidently worse than the predictions of the one-shot mixed
Nash equilibrium of the game, which entails → play with probability .5.
However, a t-test of the null hypothesis that the probability of right play is
.5 when players of equal current positions are matched shows that even this
hypothesis is rejected at conventional signiÞcance levels (t = 2.1931). This
rejection is largely accounted for by the fact that (4, 4) matches result in too
much → play.
Table 17 reports the empirical frequencies of the positions for the last 50

rounds of BOS(0).

Position
0 1 2 3 4

Frequency .350 .093 .077 .097 .383

Table 17: Position Frequencies in BOS(0)

Notice that these empirical frequencies match up fairly closely with the pre-
dictions of the theoretical model in Table 5 for all discount factors.

BOS(5)
Table 18 presents the→ play data for the six BOS(5) sessions analogously

to Table 16.
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Player�s Own Current Position
0 1 2 3 4

0 50.4 (250) 87.9 (91) 91.4 (70) 94.5 (110) 97.3 (510)
Opponent�s 1 19.8 (91) 66.7 (18) 87.0 (23) 85.7 (35) 98.5 (130)
Current 2 8.6 (70) 39.1 (23) 78.6 (14) 96.0 (25) 96.7 (120)
Position 3 6.4 (110) 37.1 (35) 32.0 (25) 76.2 (42) 93.4 (168)

4 2.2 (510) 10.8 (130) 14.2 (120) 41.1 (168) 67.8 (712)

Table 18: Play of → in BOS(5)

Overall in the BOS(5) sessions, the compliance rate was 90.8% from un-
equal positions. Of the 235 instances of non-compliance, 80 were from (3,4)
matches. The majority of these instances of noncompliance were, in turn,
cases where in the previous period the subject had been in the extreme state
4 and played the nonaggressive strategy.17 Further, 93 of the 235 instances of
non-compliance occurred in one session (#10). Overall, the compliance rates
for BOS(5) seem high enough that any simple hypothesis about subjects play
must involve something very close to the intuitive rule for the situations when
the matched subjects are in unequal positions. As before, the vast majority
of the 72 subjects in these sessions played either perfectly or almost perfectly
in accord with the prescriptions of the intuitive rule. SpeciÞcally, only 10
subjects out of 72 had compliance rates below 85%.
From the equal-position pairs (0,0) and (1,1), → was chosen far too in-

frequently relative to the equilibrium calculations of Table 3. Equilibrium
predictions for (2,2), (3,3), and (4,4) for discount factors around .75 are more
in line with the observed data. The one-shot mixed strategy equilibrium for
this game is for both players to play→ with probability 62.5%, and the fact
that the proportion of → play from these three position pairs exceeded this
level appears to reßect reputation-based reasoning.
Table 19 reports the empirical frequencies of each position observed in

the last 50 rounds of the BOS(5) sessions. It seems closest to the BOS(5)
π− distribution for the discount factor .85 in Table 2.
17This pattern recurs in other treatments. See Section 5 for attempts to explain it.
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Position
0 1 2 3 4

Frequency .286 .083 .070 .106 .456

Table 19: Position Frequencies in BOS(5)

There is a pronounced rightward bias in both play and position frequen-
cies in the BOS(5) data. This is due to two effects: (1) a bias toward the
aggressive strategy when a player and the matched opponent are in the same
position (which is qualitatively consistent with the predictions of the the-
oretical model in Section 2), and (2) a bias toward the aggressive strategy
among the instances in which the prescription of the intuitive rule was not
followed (about which the theoretical model is silent).

BOS(10)
Table 20 presents the → play data for the two BOS(10) sessions. From

unequal positions, the compliance rate was 81.4%. As in the BOS(5) sessions,
a signiÞcant proportion (60 out of 145) of the instances of noncompliance
occurred in (3,4) matches. Excluding these pairings raises the compliance
rate in BOS(10) sessions to 85.8%.

Player�s Own Current Position
0 1 2 3 4

0 59.4 (32) 92.9 (14) 93.8 (16) 90.9 (33) 93.6 (126)
Opponent�s 1 28.6 (14) � (0) 75.0 (8) 100 (8) 91.9 (37)
Current 2 12.5 (16) 50.0 (8) 50.0 (2) 81.3 (16) 97.6 (42)
Position 3 6.1 (33) 50.0 (8) 50.0 (16) 86.7 (30) 85.4 (89)

4 5.6 (126) 29.7 (37) 50.0 (42) 52.8 (89) 73.4 (358)

Table 20: Play of → in BOS(10)

For players with equal current positions, most of the observations are
(4,4) pairings, and the predictions from Table 4 are not too far off here
(though they are for p00, where far too little → play is observed relative to
the predictions of the theoretical model). In addition, because of the (4,4)
data, we cannot reject the null hypothesis that equal-position players are
simply choosing→ with the same probability as the one-shot mixed strategy
equilibrium (probability=.75, t = −0.8235). It is hard to reconcile either of
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these with the large number of noncompliant choices when 2�s and 3�s were
matched with 4�s.
The position frequencies are listed in Table 21.

Position
0 1 2 3 4

Frequency .184 .056 .070 .147 .543

Table 21: Position Frequencies in BOS(10)

Table 21 reveals that as in BOS(5), there is a pronounced rightward bias
in play even relative to the π− distributions for BOS(10). This is evi-
dently mostly due to the aforementioned noncompliant choices of 2�s and
3�s matched with 4�s.

5.3 HD Results

We now turn to a detailed analysis of the results from the HD treatments.

HD(5)
Table 22 presents the → play data for the two HD(5) sessions. From

unequal positions, the compliance rate was 91.0%.

Player�s Own Current Position
0 1 2 3 4

0 27.1 (236) 58.5 (53) 96.9 (32) 93.3 (60) 98.1 (156)
Opponent�s 1 7.5 (53) 16.7 (6) 75.0 (8) 87.5 (8) 94.9 (39)
Current 2 9.4 (32) 12.5 (8) 50.0 (8) 71.4 (7) 93.1 (29)
Position 3 1.7 (60) 0.0 (8) 0.0 (7) 31.3 (16) 81.3 (32)

4 3.8 (156) 12.8 (39) 24.1 (29) 12.5 (32) 27.9 (26)

Table 22: Play of → in HD(5)

For this treatment, the bulk of non-compliant play did not come from
(3,4) pairings: only 10 of the 76 instances of non-compliance were from (3,4)
matches. Instead, the largest portion (26) of the 76 non-compliant plays came
from (1,0) matches. This change from the BOS pattern is due, no doubt,
at least in part, to the fact that in HD failing to coordinate by playing
← is less costly than failing to coordinate by playing → . Although the
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equilibrium calculations take account of this effect, our subjects evidently
overcompensated: as evidenced by much-too-low (relative to equilibrium)
incidence of→ play from equal positions. Notice that in HD(5) sessions, the
mixed-strategy equilibrium prediction of the one-shot game is that → will
arise with probability .25. In a t-test, we fail to reject the null hypothesis
that the proportion of→ choices from equal positions is equal to the one-shot
mixed strategy probability (t = 1.1875) at conventional signiÞcance levels.
The position frequencies are listed in Table 23.

Position
0 1 2 3 4

Frequency .448 .095 .070 .103 .285

Table 23: Position Frequencies in HD(5)

These empirical frequencies are closest to the theoretical π− distribution for
relatively low discount factors, but, unlike the BOS treatments, the empirical
position frequencies in HD(5) reßect a leftward bias even relative to the left-
biased predictions of the theoretical model for low discount factors. Even for
discount rates as low as β = .5, there are more 0 types and fewer 4 types than
is predicted by the equilibrium corresponding to the intuitive rule. This may
all be accounted for by the bias toward ← play in equal-position matches,
but the underlying cause may be other-regarding preferences, such as a taste
for fairness, that might encourage subjects to try to coordinate on (←,←)
play; thus achieving an equal split of the available earnings in a given round.

HD(10)
Finally, we come to the four HD(10) sessions; Table 24 presents the→ play

data. From unequal positions the overall compliance rate was only 72.9%.

Player�s Own Current Position
0 1 2 3 4

0 27.4 (190) 56.7 (97) 62.5 (96) 75.0 (100) 90.8 (238)
Opponent�s 1 15.5 (97) 37.0 (46) 40.0 (30) 62.2 (37) 86.1 (101)
Current 2 20.8 (96) 33.3 (30) 35.3 (34) 56.0 (25) 85.7 (84)
Position 3 31.0 (100) 37.8 (37) 40.0 (25) 71.4 (28) 74.5 (106)

4 20.6 (238) 48.5 (101) 36.9 (84) 42.5 (106) 64.2 (274)

Table 24: Play of → in HD(10)
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As the table makes clear, the predictions of the intuitive-rule equilibrium
did not fare at all well when players in positions 1-3 were matched with one
another. Players with current position 0 and 4 played in a manner that is
more consistent with the intuitive rule. If we pool all of the observations of
choices by players from equal positions and compare this to the proportion
of → choices predicted in the one-shot mixed-strategy equilibrium (.5), we
again cannot reject the null hypothesis at conventional signiÞcance levels.
However, this is largely due to the fact that the prevalence of ← play from
positions (0,0), (1,1) and (2,2) is being offset by the prevalence of → play
by (3,3) and (4,4) pairs rather than the fact that players with equal current
positions are playing the one-shot mixed strategy.
The position frequencies are listed in Table 25.

Position
0 1 2 3 4

Frequency .300 .130 .112 .123 .335

Table 25: Position Frequencies in HD(10)

Relative to the equilibrium calculations, position 4 is underrepresented.
This leftward bias appears less pronounced than in the HD(5) sessions how-
ever.

6 Discussion
The experimental results appear to us to support the following:
1. Subjects attempted to use position pairs as coordinating devices even-

tually in all sessions, and the intuitive rule, or something close to it, was the
custom that invariably arose.
2. Adherence to the rule decreased in the y− parameter for each game

form.
3. Aggregate play in each session settled down to the semblance of a

stationary pattern by Round 50.
4. Adherence to the play predictions of the steady state equilibrium

corresponding to the intuitive rule was better from unequal position pairs
than from equal position pairs.
We repeat our earlier caveat that little of this can be established sta-

tistically both because the intuitive rule admits no variance from unequal
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position pairs and because we have not run nearly enough sessions of any
one treatment.18 Furthermore, it could be that behavior depends in unex-
pected ways on the speciÞc treatment variables that we kept Þxed. There
is an unlimited number of variations that would be interesting to try: total
number of rounds Þxed 6= 100, random number of rounds not told to subjects
in advance, diminishing payoff magnitudes over time to simulate discount-
ing, different x and y parameters, number of positions 6= 5, current position
distribution hidden from subjects, different monetary scale, different subject
pool, etc. It is impossible to know whether any of these variations would
produce dramatically different patterns.
However, in assessing the predictive power of the intuitive rule, certain

of these variations would be less useful. For instance, reducing the number
of positions to three would lead to a greater proportion of tied reputational
outcomes. This would lead to substantially fewer instances where reputa-
tional effects offer desymmetrizing opportunities and make it more difficult
to distinguish what rule, if any, subjects were using. Adding additional posi-
tions beyond 5, in contrast, increases the complexity of the experiment and
likely leads to a longer period before behavior �settles down.� Thus, the
experimental design decision to use Þve current positions represents an at-
tempt to balance simplicity with the need to generate a substantial number
of desymmetrizing opportunities in current positions.
Assuming that we are seeing a pattern that would be robust to such

variations, does it occur because subjects are conditioned to the intuitive rule
from their ordinary life experiences? Assuming yes to this, is the intuitive
rule so pervasive in the real world because of the coordination role analogous
to what is isolated in this experiment, or could it be that it serves a variety of
functions of which this is only one? It is impossible to know, but we suspect
the coordinating role is at least one of its important functions if not its most
important function. This leaves the question of why the intuitive rule is so
prevalent when there are so many other possible coordinating rules. Despite
the suggestions in Section 1, we do not really know.
Although there are obvious mismatches between the assumptions of the

model in Section 4 and the experiment, the model does reasonably well at
matching up with the empirical π− distribution, although less well for the
{pii}. This should perhaps not be too surprising given the number of exper-
18One could argue that because of the degree of interaction among subjects in a given

session, one session might properly be treated as a single observation.
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iments on one-shot games in which subjects do not appear to play mixed
strategies in equilibrium proportions.19

Of course, with subjects being paid only at the end of the experiment,
it is not obvious why they should discount at all, let alone geometrically or
with particular common discount factors. While we cannot defend as real-
istic the speciÞc form of the discounting assumed in the model, we suspect
that subjects do implicitly trade off present against future winnings as they
make choices in each round. And, perhaps because they are accustomed to
accept unthinkingly the advice about the relative value of a bird in the hand,
or because they are risk averse and perceive less risk in the results of play in
the current round, or for some other reason, for the most part they seem to
discount the future. Evidence for this is, somewhat circularly, based on the
observation that they mostly play according to the intuitive rule. Consider
for instance, a single individual in a large population of people playing BOS
with positive y according to the intuitive equilibrium for a particular com-
mon discount factor. Since v4 is the highest equilibrium present value, if the
individual�s discount factor were higher than that of the rest of the popula-
tion or if the individual didn�t discount at all, the individual would not be
indifferent in the equal-position matches, would eventually get to position 4,
and would always play to the right. A small proportion of our subjects did
seem to behave this way, but only a small proportion. If most subjects did,
the average frequency of position 4 would be high and so would the instances
of (→,→) play (which gives a hint about why existence fails in the model
when the discount factor is too high relative to y). This also suggests why the
theoretical model may not predict too badly if most subjects discount the fu-
ture, even if they do not all have a common discount factor or do not discount
geometrically. Because of the anonymity and the relatively large numbers of
subjects in each session, what is important is that there is enough discount-
ing going on in the aggregate. Even if nobody is exactly indifferent at any
equal-position match, if there is enough heterogeneity each individual faces
an environment that looks as though all opponents are behaving similarly,
though not deterministically. And it is only the conjectures individuals have
about their aggregate environment that matter in their respective optimiza-
tion problems. In other words, there are analogues of steady state equilibria
for repeated anonymous matching games played by heterogeneous popula-

19See, e.g., Brown and Rosenthal (1990), Rapoport and Boebel (1992), Mookherjee and
Sopher (1994), Shachat (1996).
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tions, but, when they exist, their aggregate behavior is always akin to that
of equilibria of some homogeneous population model.
Similar observations can be used to rationalize the use of an inÞnite-

population model when the population size is in fact Þnite. For some large
enough number of subjects (we hope 12 is large enough), with anonymity
reasonable individuals should be playing as if there is some undifferentiated
mass of opponents.
As for the assumption that the stage-gamemoney payoffs are von-Neumann-

Morgenstern utilities, since the money payoff in any round is small compared
with total money payoff, risk neutrality ought not to be too far wrong.
The apparent absence of end-game effects in the data, justifying the con-

venient use of a stationary model, is not surprising given the nature of the
stage games in this experiment. In the unequal position matches, which form
the large majority of matches in the data in most rounds, the intuitive rule
prescribes play of a one-shot Nash equilibrium. Thus, if an individual in
such a match is convinced that his opponent will play according to the rule
in the last round, there is no reason for the individual to deviate in the last
round. In the penultimate round, if the individual does not expect a last-
round position distribution that is much different than that of the steady
state equilibrium and if his matched opponent occupies a different position
than his own, similar considerations apply. For equal-position matches in
the last round, theoretically there is the symmetric mixed equilibrium of the
stage game, but we would hesitate to rely on that (or anything else) for a
prediction. In fact, for the purpose of explaining the absence of end-game
effects what is most important is only that whatever the subjects themselves
predict about equal-position matched play in the last round does not inßu-
ence incentives in the penultimate round when the subjects are matched with
an opponent in an unequal position.
Our explanation for the monotonicity of compliance rates in y in the data

is related to the discussion of discounting above. We suspect that if the ex-
periment could be controlled so that the parameters and discount factors
were such that the intuitive rule did not form an equilibrium, our subjects
would be at sea. Perhaps after a much longer play sequence they would man-
age to settle on one of the rules that do form equilibria, but this would not be
something that their real-world experiences would help with. And in rounds
51-100 of such a treatment we have no idea what would happen. So, consider
the thought experiment in which it is common knowledge that all players
discount geometrically, but that each player�s discount factor is a random
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draw from some distribution of discount factors, with positive probability
on the event that the aggregate amount of discounting is insufficient for the
intuitive rule to form an equilibrium (of the heterogeneous-population model
with complete information about all discount factors). Our guess is that in
such an experiment we would see some subjects attempting to play the rule
and some subjects groping about; the lower the y− value the less groping
and the higher the compliance rate. In this sense then, the model (or at least
some imagined variant of it) could explain the observed monotonicity in y.
Might there be alternative explanations for monotonicity of compliance

rates in y? Perhaps. First, there is intuition for the idea that the higher
is y the more one is willing to risk the worst outcome for a chance at the
best outcome. So, if an individual thinks that the matched opponent might
play the intuitive rule with some error, the individual might be more likely
to try to depart when y is high than when it is low (although the necessary
assumptions on the error-generating process might not be realistic). But it
seems possible to us that this could be formalized anyway with a generalized
version of the theoretical model of Section 3 and so is not necessarily an
alternative to it. Second, if y is high and an individual thinks the intuitive
rule is being played, the individual may choose to sacriÞce current payoff
when in a lower position than that of the matched opponent by departing
from the rule in order to get to a higher present-value position. But this is
characteristic behavior of a high-discount factor player, independently of y.
Such players will soon Þnd themselves in the extreme state and will be in
compliance with the intuitive rule after Round 50.
We noted earlier the pattern of departures from the intuitive rule in

BOS(5) and BOS(10) in which a 4 meets a 4, plays←, then plays→ against
a 4 in the next round. In the simplistic terms of our discussion about dis-
counting, it is as though the player Þrst acted as though she had a discount
factor no higher than the common one, then, in the next period had one
that was higher. While we cannot rationalize this within the conÞnes of our
model, it does strike us as reminiscent of behavior in other experiments ( see
Ainslie and Haslam, 1992, for a survey) that is more consistent with a hy-
pothesis of hyperbolic discounting, and hence time-inconsistency, than with
geometric discounting.
Finally, we point out one of the other steady state equilibria of the model

that has features that are reßected in some of the data. It is generated by
a variant of the intuitive rule in which individuals act as though positions 3
and 4 are the same. In other words, when an individual in position 3 meets
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an individual in position 4, the Þrst randomizes as though he were in position
4 and the second randomizes as though she were in position 3. It therefore
has a chance to provide an explanation for the pattern of departures from
compliance discussed in the previous paragraph. As an example, for BOS(5),
such steady state equilibria exist for β < .95. For instance, when β = .9,

p00 = .78, p11 = .93, p22 = .83, p33 = p43 = .69, p44 = p34 = .64.

π0 = .27, π1 = .09, π2 = .06, π3 = .12, π4 = .46.

This does well at explaining the position frequencies, but less well at explain-
ing the lack of → play when pairs with equal current positions are matched.
There are of course many other hybrids; however all of these would have to
make substantial use of the intuitive rule to be consistent with the data.
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A Appendix: Instructions to Subjects
This is an experiment in decision-making. If you follow the instructions
carefully and make good decisions, you can earn a considerable amount of
money. You will be paid in private and in cash at the end of the session.
There are twelve people participating in this session. It is important that

you remain silent once play has begun. If you do not, the experiment will
be terminated, and you will receive none of your prize money. If you have
a question during the experiment, raise your hand and a monitor will come
over to where you are sitting and answer your question in private.
The experiment will consist of a simple game played 100 times in succes-

sion. In each of the 100 rounds you will be asked to click either the left arrow
(→) or right arrow (←) on the screen with your mouse. Your winnings for
the round will be 5/c, 20/c, or 30/c, depending on the choice you make and the
choice made by your co-player for that round. Thus your total winnings for
the experiment will be between $5.00 and $30.00. Since you will be paid in
cash, privately, at the end of the experiment, none of the other participants
in the experiment will know what your winnings are. You will also never be
identiÞed by name on any publications or reports on the results from this
experiment.
In each round, your co-player will be one of the other experimental sub-

jects in this room. They have all been recruited as subjects in the same
way that you have, and they are reading exactly the same instructions that
you are for the Þrst time now. In each round your co-player will be cho-
sen anew according to a completely random drawing. Thus, in each round
your co-player is equally likely to be any of the other subjects, independently
of anything that has transpired before that round. Neither you nor your
co-player will be told the identity of the other.
Winnings for you and your co-player in each round are determined as

follows: If both of you choose the right arrow (→), you both get 5/c. If both
of you choose the left arrow (←), you both get 5/c. If one of you chooses (←)
and the other chooses (→), the one who chose (→) gets 30/c and the other
gets 20/c. To summarize, your payoff table is

Own Choice

Co-Player�s Choice
← →

← 5/c 20/c
→ 30/c 5/c
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All players have exactly the same payoff table.
Although the identities of matched co-players will not be revealed in any

round, each of you will receive a piece of information about the other�s recent
play history before choosing which arrow to click. This piece of information is
called the player�s current position, which can be at any of the Þve locations
on the line segment below.

| | | | |

↑
A player�s current position is normally arrived at by taking his/her previ-

ous position and shifting it one location to the right if the player�s previous
choice was (→) or one location to the left if the previous choice was (←).
However, if the previous position was

| | | | |
↑

and the player chose (→), the new position will simply be the same as the
previous position. Similarly, if the previous position was

|
↑

| | | |

and (←) was chosen, the position does not change.
You will be reminded in each round as to your own current position as

that is information that your co-player has about you. Each player will also
be kept informed of the distribution of ALL players� positions. In round one,
for instance, all 12 players will begin at the middle position, so the initial
screen display will be:
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Round 1 of 100 Total Earnings so far $0

OWN Current position

| | | | |

↑

CO-PLAYER�S current position

| | | | |

↑

Current position frequencies

| | | | |

0 0 12 0 0

Payoff Table:

Own Choice

Co-Player�s Choice
← →

← 5/c 20/c
→ 30/c 5/c

Please Choose an arrow

← →

When all players in the room have made their choices in a round, your
payoff for the round will be displayed in the form of a highlighted cell in the
payoff table. To begin the next round, simply click the mouse anywhere on
the screen.
Are there any questions?
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Figure 1: Sample Screen Image 
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Figure 2: Average compliance rates by round -- all treatments  
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Figure 3: Average compliance rates by round � BOS(0) 

A
ve

ra
g

e
 C

o
m

p
lia

n
ce

 R
a

te

Round
2 100

0

.5

1

 
Figure 4: Average compliance rates by round � BOS(5)
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Figure 5: Average compliance rates by round � BOS(10) 
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Figure 6: Average compliance rates by round � HD(5) 
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Figure 7: Average compliance rates by round � HD(10) 


